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1. INTRODUCTION

The purpose of this appendix is to derive expressions for computing the Aerody-
namic influence coefficient matrix (or [A] matrix) for nonplanar wing-body~-tail configura~
tions. An aerodynamic influence coefficient a;: (i.e. an element of the A matrix) is
defined as the load in Ibs. (Newtons) induced on panel i as a result of a unit angle of
attack (rad) on panel j. Simulation of wing-body interference is not attempted. Fuselage,
wing and tail thickness are assumed to be small with the result that the thickness effect on
the flow-field is negligible. No dihedral effects are considered, even though these can
be easily included by computing both downwash and sidewash. Camber effects may also
be included. Symbols used in this appendix are defined in Section 2.

The method for determining the aerodynamic influence coefficient mairix is
based on the "lifting” solution to the small perturbation, steady potential flow equation.
Expressions for the various velocity functions, needed for computing the downwash are
presented in Section 3 of this appendix. In section 4, a comparison of pressure distribu~

tions and stability derivatives derived from this investigation, with already existing results
is made .



2. SYMBOLS

The units used for the physical quantities defined in this paper are given both in

the International System of Units (SI) and the U.S. Customary Units.

Symbol

a

[A]

(%, Yr z)

Z

- C

Description
Downwash influence coefficient
Aerodynamic influence coefficient
Aspect ratio
Lk /B

Pressure coefficient

* Aerodynamic Pressure force on a panel

Velocity function
Constant

Slope of leading or trailing edges of a
panel

Free stream Mach number

Dynamic pressure

Area of a panel

Perturbation velocity in x-direction
Perturbation velocity in y-direction

Perturbation velocity in z-direction,
downwash

Rectangular Cartesian coordinate system

Ordinates of Camber line

Dimension
Nondimensional

2 rcd_] (m2 rad-])

ft
Nondimensional
Nondimensional
Nondimensional

Lbs. (Newton)

Nondimensional

Nondimensional

Nondimensional

' Lbs, ﬂ'-z (Newton m_z)

’r2 (mz)

Nondimensional

f

Nondimensional

Nondimensional

ft. (m)
ft. (m)



Symbol Description Dimensional

Greek

a Anglé of attack rad

dZ :

a, = (a- d; ) rad

B = 002 - 1‘ Nondimensional
¢ Velocity potential Nondimensional
(g m) Integration variables in Cartesian system ft. (m)

n= 57)-;— Spanwise station in fraction QF the semi-span

Subscripts

i " Aerodynamic panel number

i Aerodynamic panel number

k Panel corner point

k Aerodynamic panel number

() Referred to primed system of coordinates

Matrices

[ ] Square matrix (n x n)

{ } Column matrix (n x 1)

{ }T Row matrix (1 x n)

[;\] Diagonal matrix (n x n)



3. METHOD OF ANALYSIS

The aerodynamic influence coefficient method is based on the “lifting" solution
to the small perturbation, steady potential flow equation:

2 -
- ) +¢é +¢__=0
,(] M ¢xx Yy zz M

where ¢ is the perturbation velocity potential and M, the freestream Mach number.
Note that the same equation is also satisfied by the perturbed velocity components. It is
well known that the lifting solution of the above equation can be obtained with a vortex
distribution with strength 1o be determined by satisfying a boundary condition of flow
tangency on the wing surface. In this appendix the Woodward's method of solution
(Reference 1), has been used.

In Woodward's method, the entire wing or airplane planform is divided info a num-
ber of quadrilateral panels as shown in Figure (1). On each panel, the incidence and
camber effects are represented by a constant planar pressure vortex distribution with an
unknown strength A u. The velocity potential at any point in the flow field due to this
vortex distribution on one panel is given by:

¢, (Xl' yl’ zn) — KAU ff Z'(X' *f) dfd‘r] |
pamel L= 0%+ 2P - 924 1-M2) Ly - 124 22 )

a- K!Au z'dédn
' ff (' - )% + 22 2)

where K=0.5for M_< 1 and K=1.0for M, > 1. The primed coordinate system is
a local coordinate system as shown in Figure (2). There are many ways of finding the in-
-tegrals in Equation (2). A simple way is to regard each panel as an algebraic sum of four
semi-infinite triangular regions as shown in Figure (3a).

Thus, the velocity potential at any point P is given by:

¢ P) = ¢'l (semi-infinite triangular region from corner 1)
- ([)2 (semi-infinite triangular region from corner 2)
/

- ¢ 3‘ (semi-infinite triangular region from corner 3)

t by (semi~infinite triangular region from corner 4)
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Figure 1 Example of Quadrilateral Panel Distribution



Figure 2

Definition of Panel Coordinate System
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A similar approach can also be used when the leading and trailing edges of the
panel have negative slopes and when points 2 and 4 are coincident, i.e., the panel is
triangular, In the latter case, the same scheme as for the positive leading edge shape can

be used. However, when the leading edge slope is negative, the scheme shown in Figure
(3b) is convenient.

It is clear then that the fundamental region of integration. for Equation (2) is the
semi-infinite friangular region with a positive leading edge slope. If the equation of the
leading edge is given by & = Ly , the velocity potential due to a constant pressure vor-
tex distribution in the semi-infinite triangular region from the corner k is as follows:

KA
"bk:' KAﬂu fdnﬂ z' (x' = &) d¢ dn
Z o n .
o Corh - zfzv\/ = 07+ (=MLY =)+ 2
&1

m
(0 -KaAuv f ‘ z'dédn
+ ——y— fdn f ) T
o Ly y'-m"+z

(3)

where x'=x_ - Xy s y'=y - Y| ond z' = zp. In subsonic flow, E] = and M} =o0.

In supersonic flow, the integration limits are as shown in Figure (4) and are given below:

£ =x - M2 1) 16 -m) 4221} @)
/2 1/2
. Me-1) "yt 2= I -y 21 - MD) z'2]}./
1= .
L2 +1- M2 (3b)

(2]
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Equations (3) have been integrated in closed form by Woodward (Reference

The result is:
_ KAu
b T 2x

The corresponding velocity components are:

_ 9 KAu
U =5 T 2 Bt FY
9L KAu .
Vk(p)=_—)7;— 5 [L(F3+F4)—ZBF6 1
2 2
k p BZP 2

The velocity functions F's are defined as follows:

F]:Re{log —-’i—t—d—l——_}

N

F,=8 Re {log —2td __ } 12 +1-M2)

QMH

F3 = Re {fGl’_’l—] -—%—?2-——-:——' :’/

, Le'™ = x'y
4= tan ™! Z-Z,-l for,Mtj.o< 1
Fg=0 for M, =1

{6 -Ly) FytFQ+2 10241 - MD) =2 -L ¢y - Fg) 1}

3 Fo-L (Fy = Fo) —y'BFéj

1)

(4)

(5)

(6q)

(6b)

(6¢c)

(6d)



Fs = log <= for M, <1
(6¢)
Fg=0 for M, >1
Fo= 2 for My, <1
‘
. (6)
F6 = -E;T for M >1
where: = (22 4y V2 7a)
gt = I 4 (1= M2) r2 ] & 7b)
T =L+ (1 - M)y (7¢)
¥ =x' - Ly' (7d)
T oot - Ly (21 - M2)z12 ] & (7e)
p =[3<2+(1-M§,)?2]]/2 (79)
B = ‘ll-Mfo‘ (79)

Let p be the downwash control point of a panel. Then the downwash at p of panel
i due to @ unit vortex distribution on the semi-infinite triangular region from the corner k
of panel j is given by:

- KB (4.2 s . . . ) o
Wi B = 3 {0 2 DR = by [Fy (340 = Fliki- v}y, P} (8

where the plus sign is for the subsonic case and the minus sign for the supersonic case. The
quantities . b[k and y."k in Equation (8) are defined as follows:
J 1y

1
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L.k " X.2—X.‘
b! :._..L_: —-L——-——-L- for k=],2

(9)
Xog = X.
S S S fork =3, 4

B Yi4~7;3

Yigk = i Yik (10)
x'ijk and Zlijk can also be defined in a similar way as:
Xlijkzxi_xjk (1
Zlijk = Zi - ij (-l 2)
and also

x'..

£k =k (%)

B

Equation 8 indicates that only F] ; F2, F5 and F6 velocity functions. are needed

to evaluate the downwash w; . Simplified expressions of these velocity functions can be
derived by using equations "7 and 9 through 13. These expressions for both subsonic and
supersonic cases are presented in Table 1.

Referring back to equation 8, it follows that the downwash at point p of panel i
due to a unit vortex distribution on the jth panel, represented by a. i1 €an be written
as:

517 iz " Vi T Vi (18

In this report oniy symmefnc flight conflgurahons are considered. Letiqfhe mirror image

of the jth panel with respect to fhe line of symmeiry be denoted by j''" panel. The down-
wash at point p due ’ro the panﬁl j' s a; 2 The total downwash atp due to a unit vortex
distribution on both jth and j'f punels is then:

a.. = d.. +aij2 (19



Table T Velocity functions for computing downwash

according to equation 8

Subsonic Case:

F1=Re In X'+d')
l | v

=1n (f' \/f' +y 245 ) ()
\/Y 2 '

1,,(..’5.?..31.....)

/ 2 IBI’}’

-1 ( porbe s /b2 @ by e )
1 \Af‘ - byn? + 02 +1)z2 (14b)

F2 =Re

=1n(fb'lm

(14c)
Ve - biy)2 + 2 + 1)z

Fo= & td)
B r?

£! +‘/£|2 4 yl2 + 212

= (14d)
(2 + 7-‘2)

Supersonic Case:

Case 1. & pI%4 y‘z + z‘z

13
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1 12 |2 12
F1=1n (f s vE2 o2y )>

(15q)
\/y,2+z,2
F2= —) ln(@'f' =yl \/(b'f' -y)2 - ((g-by2 s % - 1) 2-27),
2
bt -1 (&b 2 - 1)
ifb' D1 (15b)
=\Az—y12'zl , iFb'=1 (15¢)
(&' -y
F2= ot 0s”) ( bie -v) ) , ifb' 1 (15d)
Vi - b2 Ve -byn? s 2 - 1)z
F65=0 (15¢)
\/,2_y2_z,2
Fé6 = ( 15f)
(y?+2?)
Case 2. &'= Vy'2+z'2 and b' < 1
F1=0 - ( 16q)
F2=0 ify' < b'é (16b)
k)
F2= ———— ify' = b'é! (16¢)
2,/1 - b2
F2 = w , if)" > blgl (]6d)
V1 - b2
F5=0 (16e)
F6=0 (169

Note: If &' = Vy'2 + 2'2 and b’ 21, all functions are zero.



Case 3. &< Vy'z +‘z'2 and b'< 1.

F1=0. (174)

F2 = 0. ify' € 0 (17b)

F2=0 ify! > Oand £'< by H/ 1 - b'?|2']) (17¢)
7 : 2

F2 = e ify' > Oand &' = (b'y' + 1-b" |z ) (17d)

(17¢)

F2= —le ify' > 0, €'y by H1-b7[2']) and y'> be’

| (176
- ify' > 0, & Gy W1-b2|2] )andy =b'g’

(179)
F2=0 ify' > 0,&'> (b'y' +V1 —b‘ziz'l)ond y'{b'¢!
F5=0. (17h)
F6=0. (17)

Note: If &< Vy'2 + 2’2 and b' > 1, all functions are zero,

15
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) The boundary conditions require that the flow be tangential to the camber line.
Since the downwash at p of panel i due to the vortex distribution on all panels is:

N

W

2 % A

i=1

where N, is the number of panels on one-half of the wing, fuselage and tail, the tan-
gency condition can be written as: :

Nw
dz
C —
(—=-a); ——;;: a5 (Bu); (20)
J Py
or in matrix form:
dz :
{ dxc - a}= [Gij HAul ( 21)

Solving this equation for {Au}, the unknown vortex strengths Au are obtained as:

{AU} = [c..]-] {

- al. (22)

Note that Au = uT-u". Since Cp = ~2u, it follows that ACP = Cp_-Cp+= 2Au.

Hence:

d
{ac} =2 @1 {22 - q} (29)

The total force on any panél i is given by:

F, =35, (AC

l Pi) (24)

A

where S; is the area of panel i andq is the dynamic pressure. In matrix form, the panel
forces can be written as:



~— -
S 0
152
{F = 3 " fac }
0 "S
w
- sj -1 dzc }
= A F pij] { dx -
= q [A] {a,} (25)

Where [A] is the aerodynamic influence coefficient matrix and is given by:

. Al= -7 PS\][GH]* (26)

and

(27)

w dx

The computer program for generating this [A] matrix is included in Reference 2
(Appendix A of the Summary Report).

17
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4. VALIDATION OF THE [A] - MATRIX ROUTINE

To check out the computer program for the aerodynamic matrix, equation (23) was
used to compute the pressure distribution for a highwing-midtail configuration, shown in
Figure 5. Results were compared with those derived from a NASA Langley Vortex Lattice
program, Reference 3.

Both programs employed a total of 80 panels with 50 panels on the halfwing, 10
on the half fuselage and 20 on one side of the tail. The pressure distributions are com-
pared in Figure 6. Nofe that the computed AC, is plotted at the panel centroid for the
K.U. program, butf at the panel quarter chord for the Vortex Lattice program. If is seen
that the results from both programs agree reasonably well. The computation of stability
derivatives is compared in Table 2. The experimental data are obtained from Reference 4.
To determine the effect of the number of panels on the numerical outcome, 100 and 120
panel solutions were computed. Table 2. shows that there was little change by using a
panel scheme of more than 100,

Table 2. Comparison of Computed

Stability Derivatives with Experiment for
the Configuration of Figure 5 of M=0.25

K.U. Program Vortex Lattice Program Experiment
. Reference 4
Derivatives No. of panels No. of panels
80 - 100 120 80
c, rad”! 3.1930| 3.105 | 3.0780 3.1208 3.28
[¢4 .
[ac_7dc, ~0.0395| -0.0541|-0.0429 -0.0438 -0.065

In comparison with experimental results, it is assumed that for a high wing con-
figuration, the wing may be placed directly above the fuselage at a distance of one half
fuselage diameter, so that two lifting surfaces (wing and fuselage) will overlap in some
region. A similar aerodynamic representation has been assumed for a low wing configur-
ation or for a high or low tail. Several other configurations presented in References 5
through 8 were investigated with the K.U. program. Their geometries are shown in Figures
7 through 10 respectively. The total number of panels used on a half configuration was
100. Table 3, shows the comparison with experimental results. It is seen that the com-
puted results show reasonable agreement with experiments.
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Figure 6a Comparison of wing pressure distribution ot 7 = 0.1
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Figure 6b  Comparison of wing pressure distribution at 7= 0.3
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Figure 6¢c Comparison of wing pressure distribution at n = 0.5
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Figure 6d Comparison of Wing Pressure Distribution at n= 0.7
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Figure 6e Comparison of wing pressure distribution at 7=10.9
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Figure 6f Comparison of horizontal tail pressure distribution at n=0.448

,‘5.

Figure 6g Comparison of fuselage pressure distribution at n=10.5
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